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~ Abstract—This paper presents a new spectral signature detec- time (TE), and repetition time (TR), a sequence of images of
tion approach to magnetic resonance (MR) image classification. It specific anatomic area can be generated by pixel intensities
is called constrained energy minimization (CEM) method, whichis ¢ represent characteristics of different types of tissues

derived from the minimum variance distortionless response in pas- th hout th Additi v th tral lati
sive sensor array processing. It considers a bank of spectral chan- roughouttne sequence. iionally, the spectral correlation

nels as an array of sensors where each spectral channel represent@mong the image sequence produces information that spatial
a sensor and object spectral signature in multispectral MR images correlation cannot provide. As a result, magnetic resonance
are viewed as signals impinging upon the array. The strength of imaging (MRI) becomes a more useful image modality than
the CEM lies on its ability in detection of spectral signatures of in- X-ray computerized tomography (X-CT) when it comes to
terest without knowing image background. The detected spectral . . . . .
signatures are then used for classification. The CEM makes use analysis of soft tissues and or.gans. L thg mformathn abput
of a finite impulse response (FIR) filter to linearly constrain ade- 11 and T2 offers a more precise picture of tissue functionality
sired object while minimizing interfering effects caused by other than that produced by X-CT [1], [2]. Over the past years
unknown signal sources. Unlike most spatial-based classification many computer-assisted methods have been reported in the
techniques, the proposed CEM takes advantage of spectral char- literature [3]-[20] such as PCA in [6], eigenimage analysis

acteristics to achieve object detection and classification. A series of .
experiments is conducted and compared with the commonly used in [7]-[12], neural networks [13]-{16], fuzzy-means (CM)

c-means method for performance evaluation. The results show that Methods [17], [18], hybrid methods [19], knowledge-based
the CEM method is a promising and effective spectral technique techniques [20], orthogonal projection [21], etc. For example,

for MR image classification. eigenimage filtering-based approach has shown a promise in
segmentation and feature extraction. Hybrid methods combine
I. INTRODUCTION imaging processing and model-based techniques to improve

t%egmentation. Knowledge-based techniques further allow
measure the nuclear spin density, the interactions of t ae tp mal;\e mor?tlnteli!gent C|aSISIfICta'[IOI'|1( and S(Tgmentatmnd
nuclei with their surrounding molecular environment and thot cisions. tS ?n 'Eih ernative, neura fne WOTKS are aiso proi)(ise
between close nuclei, respectively. It produces a sequenceO fge”_*"rl_s rate telr Isup_entl)r per ormarlw_ﬁel_;]n sdegmet?] adlon
multiple spectral images of tissues with a variety of contrasys orain |sts|ues 0 tﬁ a55|ca|1 mbaX|mum-| el t'o 0d metho hsi
using three magnetic resonance parameters, spin-lattice ( g? recen Iy’ a_r;_ort. ogonal su spa(ije_prozjtlac |0E.ar|?proadc 0
spin—spin (T2), and dual echo—echo proton density (P |mage|ca§3| ication vyast proposed in E ] Wﬂ:C uset ha':j
By appropriately choosing pulse sequence parameters, e ﬁ ogonal subspace projector in conjunction with a matcne
ilter to extract desired objects while annihilating undesired
objects.
i ) i ) In this paper, we make a distinction between pattern clas-
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supported by the National Science Council of Taiwan under Contract NSC-Q%-'CaF'.on and object _C a$SI ication. n pattern classification, a
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of this paper and recommending its publication was M. Gigsterisk indicates classes, which also include background classes. Although the
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UCLEAR magnetic resonance (NMR) can be used
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background knowledge. This paper presents a new approackdse, the pixel vectors which produce directions other than the
object classification for MR images, called constrained energgsired direction will be considered as interfering pixel vectors
minimization (CEM) developed in [22]-[25], which resolvesand their energies will be minimized in the output of the CEM
this dilemma. filter. There is no need of knowing these interfering pixel vectors
The CEM has shown great success in hyperspectral target et may include unknown background pixels and unidentified
tection and classification. It was designed based on a prems$gnal source vectors. This suggests that finding a CEM filter
that no background information is required for target detectiois. equivalent to seeking an adaptive beamformer, which locks
More specifically, the only working knowledge for the CEMon the desired direction of signal arrival with a unity constraint.
is the desired target. This advantage is particularly significafihe weights chosen for the CEM filter to extract the desired
when the desired targets are present in an image with complbject vectors while minimizing the energies of other pixel vec-
cated background that involves many unknown and unidentidrs are the same as those chosen for an adaptive beamformer
fied targets which are not of our interest. In MRI classificatiorthat passes signals coming from desired directions while mini-
it often occurs that the objects in which we are interested arézing the output variance caused by signals coming from other
knowna priori while complete knowledge of the image backdirections. Accordingly, it is not surprising to see that the same
ground may not be available due to its complexity resulting frosuccess found in the MVDR approach is also applied to MR
variabilities of tissues’ characterization. Therefore, if we inteimage classification.
pret desired targets as objects of interest the CEM fits well in ob-The experimental results demonstrate that the CEM filter has
ject classification in MR images. In analogy with the way thathown its ability in detection and classification of object spec-
the CEM is applied to a hyperspectral image, the CEM tredtsl signatures in an MR image sequence. In order to further
an MR image as an image cube with each image pixel cons@luate its performance, the CM method [29] is used for com-
ered to be a column vector. So, it takes advantage of specpratison. Unlike the CEM that performs object classification, the
information provided by different bands in a single pixel vecta€M method is a pattern classification technique, which must as-
as well as spectral correlation among sample pixel vectors. Thign each image pixel to one of pattern classes. The CM method
benefit cannot be obtained by spatial analysis-based techniquemlemented in this paper is slightly different from the one com-
In medical imaging, the objects of interest are generally soft tistonly used in the literature. Since the CEM filter requires the
sues that are deformable and cannot be analyzed by their shakeswledge of objects of interest, in order for a fair comparison,
The CEM is a spectral-based technique that does not rely tite used CM method also includes this prior knowledge in its
classification on object shapes. Consequently, the CEM maydastering procedure. Nevertheless, the CM method is still con-
more effective in soft object classification than classical spatisidered to be unsupervised because it needs to generate class
analysis-based image processing classification techniques th&drmation in an unsupervised manner, which is not provided
utilize sample spatial information and correlation. a priori. As will be shown, the CM method does not perform
The proposed CEM method is derived from the minimuras well as does the CEM filter due to the fact that it is a spatial
variance distortionless response (MVDR) approach that ariseglysis-based pattern classification technique.
in sensor array processing [26]-[28]. It casts an MR image clas-The remainder of this paper is organized as follows. Section ||
sification problem as a direction finding for signal arrival fronpresents the CEM approach. Section Ill briefly describes a mod-
an adaptive beamforming array. It interprets a bank of spectifdd version of the CM method to be implemented in this paper.
bands as an array of passive sensors where each spectral Is®ution IV conducts a series of experiments to evaluate the ef-
is considered as a sensor and an object present in an MR imigiveness of CEM in classification performance and also com-
sequence is viewed as a signal impinging upon the array. Mqrare the results to those produced by the CM method. Section V
specifically, if we consider an MR image pixel as a vector, twooncludes some comments.
features that completely determine the vector are its direction
and its vector length. So, if two pixel vectors pointing to the
same direction, they will be considered to be in the same class
with different magnitudes determined by their vector lengths. In Let L be the number of spectral bands (channels) used to ac-
the MVDR, signal arrival from a desired direction is generallguire MR image sequences. In this case, an MR image sequence
assumed to be knowanpriori. Then it designs an adaptive filteris actually a collection of co-registerddspectral bands. So, an
to pass through the desired signal using a unity filter constraiith image pixel in an MR image sequence can be considered as
(i.e., scalar 1) while the filter output variance (i.e., energy) sn L-dimensional pixel vector, denoted by = (71, 742, . . .,
minimized. In MRI classification, the CEM filter interprets ther;z,)? wherer;; represents the pixel of thith pixel vector in
desired direction of signal arrival as the direction pointed bythe jth spectral band. Suppose that, ro, ..., ry} is a set of
particular object pixel vector. So, all the pixel vectors pointing tall image pixels in an MR image sequence wharés the total
the same direction will belong to the same pattern class and wilimber of pixels in the image. Lekt be the spectral signature
be passed by the CEM filter with a unity constraint while thef an object of interest. The goal is to design a finite impulse re-
energies (i.e., vector lengths) of pixel vectors pointing to otheponse (FIR) linear filter specified by drdimensional vector
directions will be minimized. With this interpretation the CEMw = (w1, ws, ..., wr)? that passes the desired signatdre
filter classifies an object in an unknown image background in day constraining its direction while minimizing its output energy
MR image sequence by constraining its vector direction whitbat are caused by signal source vectors with directions other
minimizing the effects resulting from other directions. In thishan the constrained direction.

Il. CONSTRAINED ENERGY MINIMIZATION APPROACH
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More specifically, lety; denote the output of the designed FIRs used for comparative analysis. The reason to select the CM

filter resulting from theith MR image pixelr;. Theny; can be
expressed by
L

2 : T T
Y, = wiryy = W Iy =r; w.
=1

1)

The average filter output energy resulting frgmy, ro, ...,
ry} is given by

v

2=

[Z (r?w)TriTw]

i=1

N
1

method is twofold. One is that it allows us to generate back-

ground signatures in an unsupervised manner for classification.
Another is that it is basically a spatial-based pattern classifi-

cation technique. As opposed to the CEM approach that only
classifies objects of interest, the CM method classifies all MR

image pixel vectors including background pixel vectors into pat-

tern classes.

The CM method to be implemented in this paper for experi-
ments is a modified version of the commonly used CM method,
which is also referred to as ISODATA in [29], [30]. In order
to make a fair comparison, the CM method used here includes
into its clustering procedure the same knowledge of objects of
interest that is required by the CEM approach. Let the spectral
signatures op objects of interest be denoted by, }©_; where
d; is the spectral signature of thi#h object. The detailed imple-

whereR,;. = (1/N)[TV 7] is the auto-correlation mentation of the CM method can be described as follows.

i=1 r;r;

sample matrix of the MR image sequence. So, the CEM filter
is one solving the following linearly constrained optimizatiog~n1 Method

problem
min{w’ R w} subject tod’w = 1. 3)
The solution to (3) is given in [22]-[25] by
R;.,d
* LXL (4)

d’R7; ;d

Substituting the optimal weight given by (4) ferin (1) yields
the CEM filter which implements a detectdigenm (r) on an
image pixel vector and is given by

T

RZ>1<Ld r— dTRZiLr
d"R;.;d d'R;.,;d’
%)

As we can see from (5), whan = d, 6cegm(d) = 1 which
satisfies the constraint in (3). In this case, this considered

bcem(r) = (w*)Tr = <

to be the desired object pixel and will be extracted by the CEM
filter. Despite that the primary task of the CEM filter is object

1) Determine the number of pattern classe$; p and let
{ui}s_, be their corresponding class means.
2) Initialization:
Let £ = 0 and the firsip class means is fixed me) =
d;, 1 < i < pwhere{d;}!_, are provided by prior
knowledge as required by the CEM filter. All other class
meansugo), 1 > p are selected randomly. That is, for
p+1 < i < ¢, choose any initial value other théd, }”_,
for theith class meap .
At the kth iteration, compute the distance of each sample
pixel vector from all class mean,sgk) forl1 <i<cand
assign the sample vector to the class whose mean has the
shortest distance to the sample vector.
For each class with p + 1 < i < ¢, recompute its
class mean by averaging the sample vectors in the class,
denoted byﬁgk).
Letk — k+1, ui®

i

forp+1<i<ec.

3)

4)

=d;, 1<i < pandu® — "

detection, as demonstrated in the experiments it can perform as &) If any class mean changes in the $ﬁik)}§:p+1, go to

classifier by detecting different types of objects, one atatime. In

step 3).

this case, separate images are produced for each type of target$-should be noted that the knowledge fi;}?_, is given

A comment is noteworthy. The value 6§gy(r) resulting

from (5) represents the estimated abundance fraction of the

ject signaturel contained in the image pixel So, unlike most

spatial-based classification methods that can be considere
label (class)-assignment techniques, the CEM filter detects a
sired object by estimating its abundance fraction using (5). A%
result, the image generated by the CEM filter is generally gr

scale where the gray level value of each image pixel reflects t
detected amount of the abundance fraction of the desired Q
ject present in the pixel. The object detection is then perform

based on the resulting gray scale image and classification is Gl
ried out by detecting the desired objects in separate images

[ll. C-MEANS (CM) METHOD

a priori. Therefore, the firsp class means are fixed during it-

@Pations. However, the class mear{l)szg"')}gszrl are regener-

ted at each iteration by the CM method in an unsupervised
finer using the minimum distance as a criterion. These gen-

Fated class means are considered to be signatures of unknown
nal sources, which are not provided by prior knowledge and
ay include background signatures. Since the CM method is

?)attern classification technique, one of its weaknesses is de-
‘mination ofc, i.e., the number of pattern classesc i too

all, the number of pattern classes may not well represent
data, in which several distinct classes may be merged into

‘'one class. It is too large, the number efpattern classes may

over-represent the data, in which a class may be forced to be
broken up into several classes. The CEM resolves this dilemma

In order to evaluate performance of the CEM approach, thg performing object classification without using any informa-

widely used CM method [29] (also known Asmeans in [30])

tion other than that provided bjd; }?_, .
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@ (b) (c)
(d) (e)

Fig. 1. Five band test phantoms for simulation study. (a) Band 1. (b) Band 2. (c) Band 3. (d) Band 4. (e) Band 5.

IV. EXPERIMENTAL RESULTS 300 |

In this section, we present two sets of experiments, one : 250 —~ — - B
of computer-generated phantom images and another set of __ /_‘ \ el
magnetic resonance images. The phantom image experime g 200 -7 N
enable us to conduct a quantitative study and error analysis @ 7 - h N \
the CEM approach while the real MRI experiments allow us 1 =, 150 . A -
assess its utility and effectiveness in medical diagnosis. & LS \

100 S

A. Computer Simulations for Phantom Experiments \

In this section, a series of computer simulations is perform 50 '
to conduct a quantitative study and performance analysis of 1 e
CEM approach in comparison with the CM method describe 0
in Section Il with number of classes= 4 representing four 1 2 3 4 5
classes of WM, GM, CSF, and image background. The col
puter-generated phantom images used for simulations are she # of band

in Fig. 1 which have five bands, each of which was made up of _

six overlapped ellipses with their radiance spectral signatufd@ 2 GM. WM, CSF, and BKG spectral signatures.

shown in Fig. 2. These ellipses represent structure areas of three

interesting cerebral tissues corresponding to gray matter (GM), TABLE |

white matter (WM), and cerebral spinal fluid (CSF). From the VALUES OF THE %E:yELTEEVRESLU\fEFUE; LHFEME'T'IDSUSLLTEESSESUENCE
periphery to the center are background (BKG), GM, WM, and EACH BAND USED IN THE EXPERIMENTS

CSF simulated by the signatures given in Fig. 2. The gray leve!

H i i Band # MRI Parameter GM WM CSF
valugs of these areas in each band were simulated in suc —; i TRTES2500me2 5 07 T =
fashion that these values reflect the average values of their ~gand2 TR/TE=2500ms/50ms 219 180 253
spective tissues in real MR images shown in Fig. 4. Table | ta __Band 3 TR/TE=2500ms/75ms 150 124 232

Band 4 TR/TE=2500ms/100ms 105 94 220
ulates the values of the parameters used by the MRI pulse T TRITE=500ms/11 Srms o3 103 %)

guence and the gray level values of the tissues of each band useu

in the experiments. A zero-mean Gaussian noise was added to

the phantom images in Fig. 1 so as to achieve different levelsl) Abundance Percentage Thresholding Methdadl:order

of signal-to-noise ratios (SNRs) ranging from 5 dB to 20 dBo apply the CEM filter to these phantom images, the desired
Despite the fact that such MR phantom images may be unrealbject signatured was specified by one of three objects of
istic, they only serve as a purpose for illustration of the proposedr interest, GM, WM, and CSF whose spectral signatures are
CEM technique and demonstration of its advantages. shown in Fig. 2. As noted previously, the images generated
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Fig. 3. ROC curves generated by CEM with SNR5, 10, 15, and20 dB. (a) Three-dimensional ROC curves(@p, Rr a%). (b) Two-dimensional ROC
curves of(Rp, Rr). (c) Two-dimensional curves ¢fRp, a'%). (d) Two-dimensional curves ¢fRr, a%).

by the CEM filter were gray scale with the gray level valueis assigned by a “0”, in which case the pixel does not match the
proportional to detected abundance fractiorlofOn the other desired object signaturk Using this thresholding criterion, we
hand, the CM method is a classical class-label process whidm actually tally the number of pixels that the CEM filter de-
assigns each data sample vector to one and only one classt&xgd in its generated abundance fractional images and further
the CM-generated image is a classification map rather thdavelop a three-dimensional (3-D) receiver operating character-
a gray scale image as generated by the CEM filter. In ordietic (ROC) analysis based at%6.

to conduct a quantitative study and compare with the results2) Three-Dimensional ROC Analysigirst of all, let
produced by the CM method, we convert the CEM-generatéd; }”_, be a set of objects of interest, which we would like to
abundance fractional images to binary images. Here, we adoatssify. We definéV(d;), Np(d;), andNg(d;) to be the total

an approach proposed in [31], which used the abundance fraamber of pixels specified by th#h object signaturel;, the

tion percentage as a cutoff threshold value for such conversitotal number of pixels that are specified by the object signature
We first normalize the abundance fractions of all the pixels it; and actually detected as tkkg by the CEM filter, and the

a CEM-generated abundance fractional image to the rangetathll number of false alarm pixels that are not specified by the
[0, 1]. More specifically, letr be the image pixel vector andobject signaturel; but detected as thé; by the CEM filter,
a1(r), éao(r), ..., &,(r) are the estimates of the abundanceespectively. For example, the desired object signadiyrean
fractions, a1, as, ..., o, present in ther that are produced be chosen to be one of GM, WM, or CSF. Using the definitions
by applying the CEM in (5) to the image pixel vectarThen of N(d;), Np(d;), andRr(d;) we further define the detection
for each estimated abundance fractiofp(r) its normalized rate Rp(d;), false alarm rate?r(d;) for d;, mean detection

abundance fractiordy; (r) can be obtained by rate Rp, and mean false alarm raigr by
&;(r) — min é;(r) Np(d;)
N r Rp(d;) = @)
a;(r) = max &;(r) — min é;(r)’ ©) N(di)
) ) Rp(d;) = M (8)
Suppose that% is used for the cutoff abundance fraction Y N - N(d)

threshold value. If the normalized abundance fraction of a pixel »
is greater than or equal %, then the pixel is detected as the Rp = Z Rp(d;)p(d;) 9)
desired object pixel and assigned by a “1”; otherwise, the pixel P

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 26, 2008 at 22:21 from IEEE Xplore. Restrictions apply.



WANG et al. DETECTION OF SPECTRAL SIGNATURES IN MULTISPECTRAL MR IMAGES FOR CLASSIFICATION 55

p
TABLE I
Rp = Z Rp(d;)p(d;) (10) CLASSIFICATION RESULTS OFGM, WM, AND CSFFOR THE CASE OF
i=1 SNR = 5 dB WHERE THE CUTOFF THRESHOLD VALUE OF a% WAS

CHOSEN TOBE 5%, 20%, 25%, 30%, 35%, 40%, 45%\D 50%
whereN is the total number of pixels in the image aydl;) =

N(d;)/Y%_, N(d;). It is worth noting that the mean detec- a% N@) | Npd | Ne(@ | Ro(d% | Re(d%
. . . . 0,
tion rate R p defined by (9) is the mean of detection rates ove B T 22‘3‘2 e P
. . . . 0 . .

the_ detecteq objects. This is bec_ausg the CEM filter detects ¢ 25% | 9040 0040 | 14584 100.00 2581
object ata time. In order to classifyobjects{d; }?_, , the CEM oM |30% 9040 9037 [ 11131 99.97 19.70
filter must be performeg times and calculate its mean detec- 35% | 9040 8977 | 8997 99.30 15.93
tion rate. Similarly, the mean false alaif)- defined by (10) is 0% 2040 soll 2928 9525 10.53
: ' i 45% | 9040 7090 | 2751 78.43 4.87

the mean of false alarm rates over the detected objects. Us 30% 9040 181 707 4736 125
(7)—(10), each fixed% produces a pair ofkp and Rr. As a 5% 8745 8745 | 56779 100.00 99.98
consequence, varying/ from 0% up to 100% generates a se 20% | 8745 | 8745 | 51235 | 100.00 90.22
f pairs(Rp, Rp) where each pair results from a particutét 2% 375 L 19900 24.89
of pairs(fp, Rr) P nap wa [ 3% | 8745 | §7a4 | 12697 | 9999 22.36
being used as a cutoff threshold value. In this case, we use 35% 8745 8712 3036 99.62 14.15
approach proposed in [32] to plot a 3-D ROC curve based ¢ 40% 8745 8425 5479 96.34 9.65

- . 0,
three parameter$Rp, Ry, a%), where the(z, y) coordinate ‘5‘(5);’ 2322 1223 2549015 zé‘ég ‘1‘-32
07 . . e 0 B .

correspond$Rr, a%) andz axis is specified by p. By means 5% 3282 282 1 6223 | 100.00 99.95
of such a 3-D ROC curve we can further plot three two-dimer 20% | 3282 3282 | 20581 100.00 33.06
sional (2-D) curves of Rp, Rr), (Rp, a%), and(Rp, a%) 25% | 3282 3282 | 2302 100.00 3.70
; : . [ 30% | 3282 3282 115 100.00 0.18

vyhere the 2-D curve ofRp, Rr) can be wevyed as the tradi-  cs¥ =2 TS | 100,00 500
tional ROC curve in [33]. Now we can use this 3-D ROC curvt 20% | 3282 3282 0 100.00 0.00
along with three 2-D curves to analyze the performance of tt 45% | 3282 3247 0 98.93 0.00
CEM filter with different SNRs in detection of GM, WM, and 50% | 3282 2749 0 83.76 0.00

CSF. Fig. 3(a)-(b) plots its 3-D ROC curves(@p, Rr, a%)

and 2-D curves of Rp, Rr), (Rp, a%), and(Rp, a%) for TABLE IlI

SNR= 5, 10, 15,and20 dB, respectively. The 3-D ROC curvesS  CLASSIFICATION RESULTS OFGM, WM AND CSFFOR THE CASE OF

in Fig. 3(a) show the performance of a classifier as a functicitNR= 20 dB WHERE THE CUTOFF THRESHOLDVALUE OF a% WAS CHOSEN
of three parameterBp, Rr, anda%, while the 2-D curves of TO BE 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%b 50%

(Rp, Rr)inFig. 3(b) provide the mean detection rate of a clas A N@) No@ | M@ | Ro@y R
sifier versus the mean false alarm rate. It should be noted that 5% 9040 9040 | 56429 100.00 99.88
2-D curves of Rp, Rr)in Fig. 3(b) were plotted in the ranges 20% 9040 9040 | 14067 100.00 24.90
of Rp = [0.9965, 1] and Ry = [0, 0.4] for visual inspection. ig; Zgig 28;‘8 3469588 188'88 8{8‘;
According to the 2-D curves in Fig. 3(b), the CEM filter per-  6M 551555 9039 o 99.99 0.03
formed extremely well when SNR= 15 and20 dB. Then, its 40% 9040 9013 0 99.70 0.00
performance was degraded when SNR was decreased. Additi 45% 9040 8520 0 94.25 0.00
ally, the 2-D curves of R, a%) and R, a%) in Fig. 3(c)-(d) 55?,2) B O T 16066?(;’0 e
indicate how a threshold value af affects the performance 20% 1 8745 8745 | 15480 | 100.00 2727
of a classifier. Fig. 3(c) shows that the CEM filter with four dif- 25% 8745 8745 1736 100.00 3.06
ferent SNRs performed similarly when théip beganto drop  wy [39% [ 8745 8745 60 100.00 0.11
: : 35% | 8745 8745 2 99.98 0.00
gradually starting a&% = 30%, then rapidly between 45% and 20% 715 o745 o 99.85 0.00
55% and finally close to zero after 60%. Fig. 3(d) also demot 5% 3745 8745 0 3540 0.00
strates similar results but the differences among these four SN 50% | 8745 3774 0 43.16 0.00
were more visible. It clearly shows that tRg- of the CEM filter 25(;’1; ;;25 g;g; 57(1]37 igg-gg %1508
with SNR = 20 dB dropped rapidly betweea = 5% and 359 T 30852 5 0 100.00 0.00
25% and reached zero aroun = 30%. The Ry of the CEM csp | 30% | 3282 3282 0 100.00 0.00
filter with SNR = 5 dB also dropped rapidly from% = 15% to 35% | 3282 3282 0 100.00 0.00
30% and reached zero aroumh = 50%. TheR of the CEM 40% | 3282 | 3282 0 100.00 0.00
. . = . 45% | 3282 3282 0 100.00 0.00
filter with SNR = 10 and 15 dB was somewhere between thes s0% | 3282 2849 0 36,81 0.00

two curves. From Fig. 3(c)-(d), we can see that a good compro-
mise ofa% for SNR = 20 betweenRp and Ry was around
25%, 30% for SNR= 15 dB and 35% for SNR= 10 dB and considerably better than the CM method when the cutoff
5 dB. This was further justified by the classification results dhreshold value% chosen from the range of 25%—-35%.

GM, WM, and CSF for the cases of SNR 5 dB in Table Il Since 2-D curves of Rp, Rr) is similar to the 2-D ROC
and 20 dB in Table Ill where the cutoff threshold valueu® curve commonly used in detection theory, we can calculate the
was chosen to be 5%, 20%, 25%, 30%, 35%, 40%, 45%, amcta under the 2-D curve ¢RRp, Rr) [33] to quantitatively
50%. Table IV also tabulated the classification results of the CMudy the overall performance of the CEM filter. The first row
method for comparison. As we can see, the CEM performed Table V tabulates the mean detection rates calculated from
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(d)

©)

Fig. 4. Five spectral bands of real MR brain images. (a) TRAE500 ms/25 ms. (b) TR/TE= 2500 ms/50 ms. (c) TR/TE= 2500 ms/75 ms. (d) TR/ITE
2500 ms/100 ms (e) TR/TE= 500 ms/11.9 ms

TABLE IV
CLASSIFICATION RESULTS OFGM, WM AND CSFFOR CM METHOD
FORSNR = 5 AND 20 dB

SNR N(d) Np(d) Ne(d) Rp(d)% Re(d)%
GM 5dB 9040 8708 6277 96.33 11.11
20dB | 9040 9040 | 7489 100.00 13.26
WM 5dB 8745 8517 6201 97.39 10.92
20dB 8745 8745 9285 100.00 16.35
oo |48 | %8 2041 | 4003 89.61 6.43
20dB 3282 3166 4001 96.47 6.43
TABLE V (b)

MEAN DETECTION RATES CALCULATED FROM THE 2-D CURVES OF(Rp, RF)
IN FIG. 3(b)AND CLASSIFICATION RATES PRODUCED BY THECM METHOD

SNR = 5dB SNR = 10dB | SNR=15dB | SNR =20dB
CEM 0.9786 0.9930 1.0000 1.0000
CM method 0.9572 0.9845 0.9889 0.9945

the areas under 2-D curves @Rp, RF) in Fig. 3(b) where

the CEM performance was steadily improved as SNR was in-
creased. In order to evaluate the CEM performance against the
CM method, the second row of Table V tabulates the results of
the CM method for SNR= 5, 10, 15, and20. It should be noted

that no ROC curves can be generated by the CM method SiRge 5.  classification results produced by the CEM using the five images in
the CM method is a labeling process and each SNR resultsFig 4; (2) GM, (b) WM, (c) CSF.

a fixed point specified by one and only one p@itp, Rr). As

shown in Table V, the overall performance of the CEM filter is .

only slightly better than the CM method. This is because tf: Real MR Image Experiments

mean detection rate for the CEM filter was calculated d®s

In the following experiments, real MR images were used

ranging from 0% to 100% and the CEM performance was cofer performance evaluation. They were acquired from ten

siderably offset by the poor performance yieldedd%s after
35% as demonstrated in Tables Il and Il f6%

and 50%.

patients with normal physiology and no intensity inhomo-
geneity correct method was applied to the MR image data.
The MR images to be studied for our experiments are shown

40%, 45%,
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(b)

©

Fig. 6. Classification results produced by the CM method using the five images in Fig. 4. (a) 288, CFS= 128, WM= 64, and BKG= 0. (b) WM = 255,
GM = 128, CSF= 64, and BKG= 0. (c) CSF= 255, WM= 128, GM= 64, and BKG= 0.

in Fig. 4(a)—(e) with the same parameter values in Tablethe CEM were extracted directly from the MR images and ver-
Band 1 is the PD-weighted spectral image acquired by tifieed by experienced radiologists. Following the same manner
pulse sequence TR/TE 2500 ms/25 ms. Bands 2, 3, and 4conducted for MR phantom image experiments, we used five
are T2-weighted spectral images were acquired by the pulseges in Fig. 4(a)—(e) with the desired object signatures spec-
sequences TR/TE 2500 ms/50 ms, TR/TE= 2500 ms/75 ms, ified in Fig. 2. Fig. 5(a)—(c) shows the detection results of the
and TR/TE = 2500 ms/100 ms, respectively. Band 5 is theCEM filter for GM, WM, and CSF where the images labeled by
T1-weighted spectral image acquired by the pulse sequeriag (b) and (c) were produced, respectively, by the CEM filter
TR/TE = 500 ms/11.9 ms. The tissues surrounding the brausing GM, WM, and CSF as desired object signatutesor
such as bone, fat, skin, were semiautomatically extracted ussamparison, we also applied the CM method to Fig. 4(a)—(e)
interactive thresholding and masking [34]. The slice thickness produce Fig. 6(a)—(c) with the number of classes; 4 to
of all the MR images are 6 mm and axial section were takeapresent four classes, GM, WM, CSF, and image background
from GE MR 1.5T scanner. Before acquisition of the MRvhere the detection results of GM, WM, and CSF are labeled
images the scanner was adjusted to prevent artifacts caulsgda), (b), and (c), respectively. As noted, the CM method was
by the magnetic field of static, radio-frequency and gradientot stable due to its nature in unsupervised learning. When each
All experiments presented in this paper were performed undane the CM method was implemented, a different classifica-
supervision of and verified by experienced neuroradiologiststion map was generated. The results in Fig. 6 were obtained
In many MRI applications, the three cerebral tissues, GNy averaging five runs of implementation of the CM method.
WM, and CSF, are of major interest where their knowledge c&iote that the CM method proposed in Section Ill is slightly dif-
be generally obtained directly from the images. In our expefierent from the commonly used CM method, which does not
ments, the spectral signatures of GM, WM, and CSF used fiesignate any object signature as a specific pattern class. In the
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implementation of our proposed CM method, the desired ob-
ject signature was designated as one specific class and this class
was fixed during its unsupervised clustering. This is because the
CEM required the knowledge of the desired object signatures. In
order to make a fair comparison between the CM method and
the CEM, the information of the desired object signatures re-
quired for the CEM was also made available to the CM method.
As a result, three images [Fig. 6(a)—(c)] were 4-class classifica-
tion maps with GM, WM, and CSF designated as desired object
signatures, respectively. For example, in the classification map
of Fig. 6(a) the GM signature in Fig. 2 was used as the desired
signature in the initial step of the CM method wijth= 1 and

d; = GM where the pixels classified into the GM class were
assigned to be highest gray level value 255 and the pixels in the
CSF class, WM class and background class were assigned to
128, 64, and 0, respectively. Similarly, the classification maps
of Fig. 6(b)-(c) were obtained by assigning the gray level value

0 to the background and the gray level value 255 to the pixé’i@- 7. An R-G-B color image fused by the three images in Fig. 5(a)—(c).
classified in the WM and CSF, respectively, while in Fig. 6(b)

the gray level values 128 and 64 assigned to the pixels falliagixel as a mixture of object signatures present in the image data
in the GM and CSF classes, respectively, and in Fig. 6(c) taAd unmixes the object signature by estimating their abundance
gray level values 128 and 64 assigned to the pixels belongingtgctions resident in the pixel. As a result, it produces a gray
the WM and GM classes, respectively. The gray level values agale abundance fractional image for each object signature with
signed to these four classes for each case were a purely empirgal level values proportional to the abundance fractions of the
choice to maximize the contrast of the desired object signatugdject signature contained in the pixel. Its detection and classi-
As for computational complexity, we used Pentium llification is then performed by these generated abundance frac-
733-Mhz PCs to run all the experiments for the CEM angbnal images. Such analysis is referred to as subpixel detection
our CM method. It was found that the CEM produced ongnd mixed pixel classification in remote sensing literature. Com-
detection image almost instantly with less than a second (8g&red with traditional spatial-based image classification tech-
ms). Compared with the CEM, the CM method required abogiques that are basically class-label assignment processes on the
4 min. (248021 ms) for each run to generate one classificatipasis of pure pixels, the CEM is actually an estimation technique
map. Since the CM method needed 5 runs of the CM methggerating on mixed pixels. Consequently, the performance of
to obtain the average performance for each case of using GMe CEM is determined by three parameters: detectionRase,
WM, and CSF as the desired object signatures, a total of ffise alarm rateRr; and abundance fraction%. In order to
runs was required to generate the three images in Fig. 6(a)-dglluate the inter-relationship among these parameters, a new
with computing time of about one hour. 3-D ROC analysis was proposed in Section IV-A and used for
In MR phantom image experiments, Gaussian noise was sigerformance evaluation for phantom image experiments. The
ulated to achieve various SNR for quantitative analysis. UanIfoncept of such a3-D ROC ana|ysis was recenﬂy deve|oped for
tunately, a quantitative study will be difficult for the above reai]yperspectra| image ana|ysis [38], [39] The 2-D ROC ana|ysis
MR image experiments for the following two reasons. One i§ well established for signal detection theory, which is based on
that it requires reliable techniques to estimate noise in the MBsting two hypotheses. However, the proposed 3-D ROC anal-
images. This has been a challenging issue in signal and img@gs is developed for signal estimation theory which is based
processing [35], [36] and beyond the scope of this paper. T signal abundance fractions estimated from the data with the
CEM filter generates gray scale abundance fractional images{ird dimension specified by abundance fractiof. When a
MR image classification which provide radiologists with grayarticular value 0f:% is used to threshold a gray scale abun-
level information for their visual interpretation. Such qualitagance fractional image into a binary image, it results in a pair of
tive information is useful for medical diagnosis, but will be iOSERD-/ Ry) that corresponds to a point in a 2-D ROC curve. So,
if gray scale images are converted to binary images by threshe 3-D ROC curve is still a one-dimensional curve, not a 3-D
olding. In addition, it is nearly impossible for radiologists taurface. It can only be described in a 3-D space formed by three
identify all the piXGiS in real MR images for quantitative StUdbarametersRD_/ Rp, a%) where each point on the 3-D curve
as the way we did for phantom images where we knew exacflya result of a pair of Rp, Rr) with a specifica% used as a
what class to which each pixel belonged. As a consequenggioff threshold value. As noted, when the threshold valu@/ef
no quantitative analysis was conducted for the real MR imageset too low, a mixed pixel may contain more than one object
experiments. signature whose abundance fraction exceeds the threshold value
a%. Consequently, the pixel may be classified to more than one
class. If thea% is set too high, a pixel must have a sufficiently
The CEM is a new technigue, which recently showed greahough abundance fraction to be declared as a target. Otherwise,
success in remote sensing image classification [37]. It considére pixel will be assigned to a background pixel. Such scenarios

C. Discussion and Conclusion
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(c) CSF

Fig. 8. Three R—G-B color images produced for each of Fig. 6(a)—(c); (a) GM, (b) WM, (c) CSF.

will occur in mixed pixel classification, but not in pure pixelextreme case, an equal R—-G—B mixed color will be white. The
classification. advantage of using color visualization cannot be gained by
Since the CEM designates a particular object signature agaditional spatial-based classification methods such as the CM
desired target signature for detection, it must perform for eaofethod. As a comparative example, we also produced three
object signature to achieve classification as demonstratedRRG—B color images in Fig. 8(a)—(c) for the three images in
Fig. 5. However, its classification can be also performed big. 6(a)—(c) which adopted the same color assignment used
fusing all separate detected objects into one image by assignfogthe CEM-generated image (i.e., red for GM, green for WM,
different colors to distinct detected objects. Fig. 8 showsamd blue for CSF). As we can see from Fig. 8, there is no
color image that used red, green and blue to represent Ghlkible difference among the three-color images produced by
WM, and CSF, respectively, for visualization. As shown ithe three detection images in Fig. 6(a)—(c). More importantly,
[38]-[40], this image fusion can be done by extending thée three color were distinct and no mixed colors were found in
CEM to a linearly constrained minimum variance approadhe images. This is not true for Fig. 7. As we compare Fig. 8
that can simultaneously classify multiple object signaturesith Fig. 7, the CEM-generated color image provides mixture
using different colors to highlight detected objects. The colamformation of the three tissue signatures via their mixing
of a mixed pixel is mixed by colors assigned to the objecilors, whereas the colors of the three images in Fig. 8(a)—(c)
signatures that are present in the pixel. So, the mixture afe simply pure not mixed.
colors in a mixed pixel indicates how various object signa- Another advantage of the CEM is computational efficient. As
tures are mixed with different abundance fractions. For amoted in our experiments, it took less than one second to gen-
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erate one image result. Compared with the CM method that the classification results produced by classical spatial-based pat-
quired about 3 min, it was a tremendous saving. Most of atern classification techniques are basically classification maps,
the significant strength resulting from the CEM is that it doeshich show labels of each pixel. By contrast, the image pro-
not require background knowledge. In particular, the CEM suguced by the CEM filter is essentially a gray scale image. In
presses the image background while it extracting the desiredler to evaluate its performance, the classical 2-D ROC anal-
object signature. There is no need for the CEM to classify tlysis is extended to a 3-D ROC analysis which is based on three
image background into different pattern classes. This advantggeameters, detection rate, false alarm rate, and abundance frac-
is particularly useful when the image background is complicatéidn percentage. Including object abundance fractions as a third
and difficult to characterize. dimension in ROC curves is particularly useful for spectral im-
As a concluding remark, the CM method proposed iagery where spectral information can be characterized separated
Section Ill takes advantage of the knowledge of desired objdoim spatial information.
signatures in its clustering process. Should this knowledge not
be used, our proposed CM method would have become the
commonly used unsupervised CM method. In this case, all the
cluster centers must be reshuffled each time when the clustering he authors would like to thank Dr. T.-W. Tsai with the De-
is performed because the desired object signatures might pattment of Radiology in Taichung Veterans General Hospital
be cluster centers as we wish. The resulting performance nfay his suggestions.
not be as good as our proposed CM method. Besides, it may
also require extra computing time to cluster an additional class
due to the fact that there is no fixed cluster center designated
for a desired object signature. [
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