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Detection of Spectral Signatures in Multispectral
MR Images for Classification
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and Chein-I. Chang*, Senior Member, IEEE

Abstract—This paper presents a new spectral signature detec-
tion approach to magnetic resonance (MR) image classification. It
is called constrained energy minimization (CEM) method, which is
derived from the minimum variance distortionless response in pas-
sive sensor array processing. It considers a bank of spectral chan-
nels as an array of sensors where each spectral channel represents
a sensor and object spectral signature in multispectral MR images
are viewed as signals impinging upon the array. The strength of
the CEM lies on its ability in detection of spectral signatures of in-
terest without knowing image background. The detected spectral
signatures are then used for classification. The CEM makes use
of a finite impulse response (FIR) filter to linearly constrain a de-
sired object while minimizing interfering effects caused by other
unknown signal sources. Unlike most spatial-based classification
techniques, the proposed CEM takes advantage of spectral char-
acteristics to achieve object detection and classification. A series of
experiments is conducted and compared with the commonly used
-means method for performance evaluation. The results show that

the CEM method is a promising and effective spectral technique
for MR image classification.

I. INTRODUCTION

NUCLEAR magnetic resonance (NMR) can be used to
measure the nuclear spin density, the interactions of the

nuclei with their surrounding molecular environment and those
between close nuclei, respectively. It produces a sequence of
multiple spectral images of tissues with a variety of contrasts
using three magnetic resonance parameters, spin-lattice (T1),
spin–spin (T2), and dual echo–echo proton density (PD).
By appropriately choosing pulse sequence parameters, echo
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time (TE), and repetition time (TR), a sequence of images of
specific anatomic area can be generated by pixel intensities
that represent characteristics of different types of tissues
throughout the sequence. Additionally, the spectral correlation
among the image sequence produces information that spatial
correlation cannot provide. As a result, magnetic resonance
imaging (MRI) becomes a more useful image modality than
X-ray computerized tomography (X-CT) when it comes to
analysis of soft tissues and organs since the information about
T1 and T2 offers a more precise picture of tissue functionality
than that produced by X-CT [1], [2]. Over the past years
many computer-assisted methods have been reported in the
literature [3]–[20] such as PCA in [6], eigenimage analysis
in [7]–[12], neural networks [13]–[16], fuzzy-means (CM)
methods [17], [18], hybrid methods [19], knowledge-based
techniques [20], orthogonal projection [21], etc. For example,
eigenimage filtering-based approach has shown a promise in
segmentation and feature extraction. Hybrid methods combine
imaging processing and model-based techniques to improve
segmentation. Knowledge-based techniques further allow
one to make more intelligent classification and segmentation
decisions. As an alternative, neural networks are also proposed
to demonstrate their superior performance in segmentation
of brain tissues to classical maximum-likelihood methods.
More recently, an orthogonal subspace projection approach to
MR image classification was proposed in [21], which used an
orthogonal subspace projector in conjunction with a matched
filter to extract desired objects while annihilating undesired
objects.

In this paper, we make a distinction between pattern clas-
sification and object classification. In pattern classification, a
classifier must classify image data into a number of pattern
classes, which also include background classes. Although the
background knowledge may be obtained directly from the
image data in an unsupervised means, it may not be accurate.
In some cases, it may not be reliable, particularly, when the
objects are relatively small or the image background are
complicated. Besides, image background generally varies with
pixels and is difficult to characterize. As a result, it is nearly
impossible to classify image background without complete
background knowledge. On the other hand, in object classifica-
tion we are generally interested in classification of objects of
interest, but not classification of image background. In many
situations, we may have prior knowledge about the objects we
would like to classify, but do not have knowledge about image
background. Under such circumstance, it is highly desirable
to perform object classification with no need of acquiring
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background knowledge. This paper presents a new approach to
object classification for MR images, called constrained energy
minimization (CEM) developed in [22]–[25], which resolves
this dilemma.

The CEM has shown great success in hyperspectral target de-
tection and classification. It was designed based on a premise
that no background information is required for target detection.
More specifically, the only working knowledge for the CEM
is the desired target. This advantage is particularly significant
when the desired targets are present in an image with compli-
cated background that involves many unknown and unidenti-
fied targets which are not of our interest. In MRI classification,
it often occurs that the objects in which we are interested are
knowna priori while complete knowledge of the image back-
ground may not be available due to its complexity resulting from
variabilities of tissues’ characterization. Therefore, if we inter-
pret desired targets as objects of interest the CEM fits well in ob-
ject classification in MR images. In analogy with the way that
the CEM is applied to a hyperspectral image, the CEM treats
an MR image as an image cube with each image pixel consid-
ered to be a column vector. So, it takes advantage of spectral
information provided by different bands in a single pixel vector
as well as spectral correlation among sample pixel vectors. This
benefit cannot be obtained by spatial analysis-based techniques.
In medical imaging, the objects of interest are generally soft tis-
sues that are deformable and cannot be analyzed by their shapes.
The CEM is a spectral-based technique that does not rely its
classification on object shapes. Consequently, the CEM may be
more effective in soft object classification than classical spatial
analysis-based image processing classification techniques that
utilize sample spatial information and correlation.

The proposed CEM method is derived from the minimum
variance distortionless response (MVDR) approach that arises
in sensor array processing [26]–[28]. It casts an MR image clas-
sification problem as a direction finding for signal arrival from
an adaptive beamforming array. It interprets a bank of spectral
bands as an array of passive sensors where each spectral band
is considered as a sensor and an object present in an MR image
sequence is viewed as a signal impinging upon the array. More
specifically, if we consider an MR image pixel as a vector, two
features that completely determine the vector are its direction
and its vector length. So, if two pixel vectors pointing to the
same direction, they will be considered to be in the same class
with different magnitudes determined by their vector lengths. In
the MVDR, signal arrival from a desired direction is generally
assumed to be knowna priori. Then it designs an adaptive filter
to pass through the desired signal using a unity filter constraint
(i.e., scalar 1) while the filter output variance (i.e., energy) is
minimized. In MRI classification, the CEM filter interprets the
desired direction of signal arrival as the direction pointed by a
particular object pixel vector. So, all the pixel vectors pointing to
the same direction will belong to the same pattern class and will
be passed by the CEM filter with a unity constraint while the
energies (i.e., vector lengths) of pixel vectors pointing to other
directions will be minimized. With this interpretation the CEM
filter classifies an object in an unknown image background in an
MR image sequence by constraining its vector direction while
minimizing the effects resulting from other directions. In this

case, the pixel vectors which produce directions other than the
desired direction will be considered as interfering pixel vectors
and their energies will be minimized in the output of the CEM
filter. There is no need of knowing these interfering pixel vectors
that may include unknown background pixels and unidentified
signal source vectors. This suggests that finding a CEM filter
is equivalent to seeking an adaptive beamformer, which locks
on the desired direction of signal arrival with a unity constraint.
The weights chosen for the CEM filter to extract the desired
object vectors while minimizing the energies of other pixel vec-
tors are the same as those chosen for an adaptive beamformer
that passes signals coming from desired directions while mini-
mizing the output variance caused by signals coming from other
directions. Accordingly, it is not surprising to see that the same
success found in the MVDR approach is also applied to MR
image classification.

The experimental results demonstrate that the CEM filter has
shown its ability in detection and classification of object spec-
tral signatures in an MR image sequence. In order to further
evaluate its performance, the CM method [29] is used for com-
parison. Unlike the CEM that performs object classification, the
CM method is a pattern classification technique, which must as-
sign each image pixel to one of pattern classes. The CM method
implemented in this paper is slightly different from the one com-
monly used in the literature. Since the CEM filter requires the
knowledge of objects of interest, in order for a fair comparison,
the used CM method also includes this prior knowledge in its
clustering procedure. Nevertheless, the CM method is still con-
sidered to be unsupervised because it needs to generate class
information in an unsupervised manner, which is not provided
a priori. As will be shown, the CM method does not perform
as well as does the CEM filter due to the fact that it is a spatial
analysis-based pattern classification technique.

The remainder of this paper is organized as follows. Section II
presents the CEM approach. Section III briefly describes a mod-
ified version of the CM method to be implemented in this paper.
Section IV conducts a series of experiments to evaluate the ef-
fectiveness of CEM in classification performance and also com-
pare the results to those produced by the CM method. Section V
concludes some comments.

II. CONSTRAINED ENERGY MINIMIZATION APPROACH

Let be the number of spectral bands (channels) used to ac-
quire MR image sequences. In this case, an MR image sequence
is actually a collection of co-registeredspectral bands. So, an
th image pixel in an MR image sequence can be considered as

an -dimensional pixel vector, denoted by
where represents the pixel of theth pixel vector in

the th spectral band. Suppose that is a set of
all image pixels in an MR image sequence whereis the total
number of pixels in the image. Let be the spectral signature
of an object of interest. The goal is to design a finite impulse re-
sponse (FIR) linear filter specified by an-dimensional vector

that passes the desired signature
by constraining its direction while minimizing its output energy
that are caused by signal source vectors with directions other
than the constrained direction.
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More specifically, let denote the output of the designed FIR
filter resulting from the th MR image pixel . Then can be
expressed by

(1)

The average filter output energy resulting from
is given by

(2)

where is the auto-correlation
sample matrix of the MR image sequence. So, the CEM filter
is one solving the following linearly constrained optimization
problem

subject to (3)

The solution to (3) is given in [22]–[25] by

(4)

Substituting the optimal weight given by (4) for in (1) yields
the CEM filter which implements a detector, on an
image pixel vector and is given by

(5)
As we can see from (5), when which
satisfies the constraint in (3). In this case, theis considered
to be the desired object pixel and will be extracted by the CEM
filter. Despite that the primary task of the CEM filter is object
detection, as demonstrated in the experiments it can perform as a
classifier by detecting different types of objects, one at a time. In
this case, separate images are produced for each type of targets.

A comment is noteworthy. The value of resulting
from (5) represents the estimated abundance fraction of the ob-
ject signature contained in the image pixel. So, unlike most
spatial-based classification methods that can be considered as
label (class)-assignment techniques, the CEM filter detects a de-
sired object by estimating its abundance fraction using (5). As a
result, the image generated by the CEM filter is generally gray
scale where the gray level value of each image pixel reflects the
detected amount of the abundance fraction of the desired ob-
ject present in the pixel. The object detection is then performed
based on the resulting gray scale image and classification is car-
ried out by detecting the desired objects in separate images.

III. C-M EANS (CM) METHOD

In order to evaluate performance of the CEM approach, the
widely used CM method [29] (also known as-means in [30])

is used for comparative analysis. The reason to select the CM
method is twofold. One is that it allows us to generate back-
ground signatures in an unsupervised manner for classification.
Another is that it is basically a spatial-based pattern classifi-
cation technique. As opposed to the CEM approach that only
classifies objects of interest, the CM method classifies all MR
image pixel vectors including background pixel vectors into pat-
tern classes.

The CM method to be implemented in this paper for experi-
ments is a modified version of the commonly used CM method,
which is also referred to as ISODATA in [29], [30]. In order
to make a fair comparison, the CM method used here includes
into its clustering procedure the same knowledge of objects of
interest that is required by the CEM approach. Let the spectral
signatures of objects of interest be denoted by where

is the spectral signature of theth object. The detailed imple-
mentation of the CM method can be described as follows.

CM Method

1) Determine the number of pattern classes, and let
be their corresponding class means.

2) Initialization:
Let and the first class means is fixed at

where are provided by prior
knowledge as required by the CEM filter. All other class
means are selected randomly. That is, for

, choose any initial value other than
for the th class mean .

3) At the th iteration, compute the distance of each sample
pixel vector from all class means, for and
assign the sample vector to the class whose mean has the
shortest distance to the sample vector.

4) For each class with , recompute its
class mean by averaging the sample vectors in the class,
denoted by .

Let and
for .

5) If any class mean changes in the set , go to
step 3).

It should be noted that the knowledge of is given
a priori. Therefore, the first class means are fixed during it-
erations. However, the class means, are regener-
ated at each iteration by the CM method in an unsupervised
manner using the minimum distance as a criterion. These gen-
erated class means are considered to be signatures of unknown
signal sources, which are not provided by prior knowledge and
may include background signatures. Since the CM method is
a pattern classification technique, one of its weaknesses is de-
termination of , i.e., the number of pattern classes. Ifis too
small, the number of pattern classes may not well represent
the data, in which several distinct classes may be merged into
one class. If is too large, the number ofpattern classes may
over-represent the data, in which a class may be forced to be
broken up into several classes. The CEM resolves this dilemma
by performing object classification without using any informa-
tion other than that provided by .
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(a) (b) (c)

(d) (e)

Fig. 1. Five band test phantoms for simulation study. (a) Band 1. (b) Band 2. (c) Band 3. (d) Band 4. (e) Band 5.

IV. EXPERIMENTAL RESULTS

In this section, we present two sets of experiments, one set
of computer-generated phantom images and another set of real
magnetic resonance images. The phantom image experiments
enable us to conduct a quantitative study and error analysis for
the CEM approach while the real MRI experiments allow us to
assess its utility and effectiveness in medical diagnosis.

A. Computer Simulations for Phantom Experiments

In this section, a series of computer simulations is performed
to conduct a quantitative study and performance analysis of the
CEM approach in comparison with the CM method described
in Section III with number of classes representing four
classes of WM, GM, CSF, and image background. The com-
puter-generated phantom images used for simulations are shown
in Fig. 1 which have five bands, each of which was made up of
six overlapped ellipses with their radiance spectral signatures
shown in Fig. 2. These ellipses represent structure areas of three
interesting cerebral tissues corresponding to gray matter (GM),
white matter (WM), and cerebral spinal fluid (CSF). From the
periphery to the center are background (BKG), GM, WM, and
CSF simulated by the signatures given in Fig. 2. The gray level
values of these areas in each band were simulated in such a
fashion that these values reflect the average values of their re-
spective tissues in real MR images shown in Fig. 4. Table I tab-
ulates the values of the parameters used by the MRI pulse se-
quence and the gray level values of the tissues of each band used
in the experiments. A zero-mean Gaussian noise was added to
the phantom images in Fig. 1 so as to achieve different levels
of signal-to-noise ratios (SNRs) ranging from 5 dB to 20 dB.
Despite the fact that such MR phantom images may be unreal-
istic, they only serve as a purpose for illustration of the proposed
CEM technique and demonstration of its advantages.

Fig. 2. GM, WM, CSF, and BKG spectral signatures.

TABLE I
VALUES OF THE PARAMETERS USED BY THE MRI PULSE SEQUENCE

AND THE GRAY LEVEL VALUES OF THE TISSUES OF

EACH BAND USED IN THE EXPERIMENTS

1) Abundance Percentage Thresholding Method:In order
to apply the CEM filter to these phantom images, the desired
object signature was specified by one of three objects of
our interest, GM, WM, and CSF whose spectral signatures are
shown in Fig. 2. As noted previously, the images generated
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(a) (b)

(c) (d)

Fig. 3. ROC curves generated by CEM with SNR= 5; 10; 15; and20 dB. (a) Three-dimensional ROC curves of(R ; R a%). (b) Two-dimensional ROC
curves of(R ; R ). (c) Two-dimensional curves of(R ; a%). (d) Two-dimensional curves of(R ; a%).

by the CEM filter were gray scale with the gray level values
proportional to detected abundance fraction of. On the other
hand, the CM method is a classical class-label process which
assigns each data sample vector to one and only one class. So,
the CM-generated image is a classification map rather than
a gray scale image as generated by the CEM filter. In order
to conduct a quantitative study and compare with the results
produced by the CM method, we convert the CEM-generated
abundance fractional images to binary images. Here, we adopt
an approach proposed in [31], which used the abundance frac-
tion percentage as a cutoff threshold value for such conversion.
We first normalize the abundance fractions of all the pixels in
a CEM-generated abundance fractional image to the range of
[0, 1]. More specifically, let be the image pixel vector and

are the estimates of the abundance
fractions, present in the that are produced
by applying the CEM in (5) to the image pixel vector. Then
for each estimated abundance fraction its normalized
abundance fraction, can be obtained by

(6)

Suppose that % is used for the cutoff abundance fraction
threshold value. If the normalized abundance fraction of a pixel
is greater than or equal to%, then the pixel is detected as the
desired object pixel and assigned by a “1”; otherwise, the pixel

is assigned by a “0”, in which case the pixel does not match the
desired object signature. Using this thresholding criterion, we
can actually tally the number of pixels that the CEM filter de-
tected in its generated abundance fractional images and further
develop a three-dimensional (3-D) receiver operating character-
istic (ROC) analysis based on%.

2) Three-Dimensional ROC Analysis:First of all, let
be a set of objects of interest, which we would like to

classify. We define , and to be the total
number of pixels specified by theth object signature , the
total number of pixels that are specified by the object signature

and actually detected as the by the CEM filter, and the
total number of false alarm pixels that are not specified by the
object signature but detected as the by the CEM filter,
respectively. For example, the desired object signaturecan
be chosen to be one of GM, WM, or CSF. Using the definitions
of , and we further define the detection
rate , false alarm rate for , mean detection
rate , and mean false alarm rate by

(7)

(8)

(9)
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(10)

where is the total number of pixels in the image and
. It is worth noting that the mean detec-

tion rate defined by (9) is the mean of detection rates over
the detected objects. This is because the CEM filter detects one
object at a time. In order to classifyobjects , the CEM
filter must be performed times and calculate its mean detec-
tion rate. Similarly, the mean false alarm defined by (10) is
the mean of false alarm rates over the detected objects. Using
(7)–(10), each fixed % produces a pair of and . As a
consequence, varying% from 0% up to 100% generates a set
of pairs where each pair results from a particular%
being used as a cutoff threshold value. In this case, we use an
approach proposed in [32] to plot a 3-D ROC curve based on
three parameters, , where the coordinate
corresponds and axis is specified by . By means
of such a 3-D ROC curve we can further plot three two-dimen-
sional (2-D) curves of , , and
where the 2-D curve of can be viewed as the tradi-
tional ROC curve in [33]. Now we can use this 3-D ROC curve
along with three 2-D curves to analyze the performance of the
CEM filter with different SNRs in detection of GM, WM, and
CSF. Fig. 3(a)-(b) plots its 3-D ROC curves of
and 2-D curves of , , and for
SNR and dB, respectively. The 3-D ROC curves
in Fig. 3(a) show the performance of a classifier as a function
of three parameters , and %, while the 2-D curves of
( ) in Fig. 3(b) provide the mean detection rate of a clas-
sifier versus the mean false alarm rate. It should be noted that the
2-D curves of ( ) in Fig. 3(b) were plotted in the ranges
of and for visual inspection.
According to the 2-D curves in Fig. 3(b), the CEM filter per-
formed extremely well when SNR and dB. Then, its
performance was degraded when SNR was decreased. Addition-
ally, the 2-D curves of ( %) and ( %) in Fig. 3(c)-(d)
indicate how a threshold value of% affects the performance
of a classifier. Fig. 3(c) shows that the CEM filter with four dif-
ferent SNRs performed similarly when their began to drop
gradually starting at 30%, then rapidly between 45% and
55% and finally close to zero after 60%. Fig. 3(d) also demon-
strates similar results but the differences among these four SNRs
were more visible. It clearly shows that the of the CEM filter
with SNR dB dropped rapidly between and
25% and reached zero around . The of the CEM
filter with SNR dB also dropped rapidly from 15% to
30% and reached zero around 50%. The of the CEM
filter with SNR and 15 dB was somewhere between these
two curves. From Fig. 3(c)-(d), we can see that a good compro-
mise of % for SNR between and was around
25%, 30% for SNR dB and 35% for SNR dB and
5 dB. This was further justified by the classification results of
GM, WM, and CSF for the cases of SNR dB in Table II
and 20 dB in Table III where the cutoff threshold value of%
was chosen to be 5%, 20%, 25%, 30%, 35%, 40%, 45%, and
50%. Table IV also tabulated the classification results of the CM
method for comparison. As we can see, the CEM performed

TABLE II
CLASSIFICATION RESULTS OFGM, WM, AND CSFFOR THE CASE OF

SNR = 5 dB WHERE THE CUTOFF THRESHOLDVALUE OF a% WAS

CHOSEN TOBE 5%, 20%, 25%, 30%, 35%, 40%, 45%,AND 50%

TABLE III
CLASSIFICATION RESULTS OFGM, WM AND CSFFOR THE CASE OF

SNR= 20 dB WHERE THECUTOFF THRESHOLDVALUE OF a% WAS CHOSEN

TO BE 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%,AND 50%

considerably better than the CM method when the cutoff
threshold value % chosen from the range of 25%–35%.

Since 2-D curves of is similar to the 2-D ROC
curve commonly used in detection theory, we can calculate the
area under the 2-D curve of [33] to quantitatively
study the overall performance of the CEM filter. The first row
of Table V tabulates the mean detection rates calculated from
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(a) (b) (c)

(d) (e)

Fig. 4. Five spectral bands of real MR brain images. (a) TR/TE= 2500 ms/25 ms. (b) TR/TE= 2500ms/50 ms. (c) TR/TE= 2500 ms/75 ms. (d) TR/TE=
2500 ms/100 ms (e) TR/TE= 500 ms/11.9 ms

TABLE IV
CLASSIFICATION RESULTS OFGM, WM AND CSFFOR CM METHOD

FOR SNR= 5 AND 20 dB

TABLE V
MEAN DETECTIONRATES CALCULATED FROM THE 2-D CURVES OF(R ; R )

IN FIG. 3(b)AND CLASSIFICATION RATES PRODUCED BY THECM METHOD

the areas under 2-D curves of in Fig. 3(b) where
the CEM performance was steadily improved as SNR was in-
creased. In order to evaluate the CEM performance against the
CM method, the second row of Table V tabulates the results of
the CM method for SNR and . It should be noted
that no ROC curves can be generated by the CM method since
the CM method is a labeling process and each SNR results in
a fixed point specified by one and only one pair . As
shown in Table V, the overall performance of the CEM filter is
only slightly better than the CM method. This is because the
mean detection rate for the CEM filter was calculated for%
ranging from 0% to 100% and the CEM performance was con-
siderably offset by the poor performance yielded by% after
35% as demonstrated in Tables II and III for 40%, 45%,
and 50%.

(a) (b)

(c)

Fig. 5. Classification results produced by the CEM using the five images in
Fig. 4; (a) GM, (b) WM, (c) CSF.

B. Real MR Image Experiments

In the following experiments, real MR images were used
for performance evaluation. They were acquired from ten
patients with normal physiology and no intensity inhomo-
geneity correct method was applied to the MR image data.
The MR images to be studied for our experiments are shown
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(a) (b)

(c)

Fig. 6. Classification results produced by the CM method using the five images in Fig. 4. (a) GM= 255, CFS= 128, WM= 64, and BKG= 0. (b) WM= 255,
GM = 128, CSF= 64, and BKG= 0. (c) CSF= 255, WM= 128, GM= 64, and BKG= 0.

in Fig. 4(a)–(e) with the same parameter values in Table I.
Band 1 is the PD-weighted spectral image acquired by the
pulse sequence TR/TE ms/25 ms. Bands 2, 3, and 4
are T2-weighted spectral images were acquired by the pulse
sequences TR/TE ms/50 ms, TR/TE ms/75 ms,
and TR/TE ms/100 ms, respectively. Band 5 is the
T1-weighted spectral image acquired by the pulse sequence
TR/TE ms/11.9 ms. The tissues surrounding the brain
such as bone, fat, skin, were semiautomatically extracted using
interactive thresholding and masking [34]. The slice thickness
of all the MR images are 6 mm and axial section were taken
from GE MR 1.5T scanner. Before acquisition of the MR
images the scanner was adjusted to prevent artifacts caused
by the magnetic field of static, radio-frequency and gradient.
All experiments presented in this paper were performed under
supervision of and verified by experienced neuroradiologists.

In many MRI applications, the three cerebral tissues, GM,
WM, and CSF, are of major interest where their knowledge can
be generally obtained directly from the images. In our experi-
ments, the spectral signatures of GM, WM, and CSF used for

the CEM were extracted directly from the MR images and ver-
ified by experienced radiologists. Following the same manner
conducted for MR phantom image experiments, we used five
images in Fig. 4(a)–(e) with the desired object signatures spec-
ified in Fig. 2. Fig. 5(a)–(c) shows the detection results of the
CEM filter for GM, WM, and CSF where the images labeled by
(a), (b) and (c) were produced, respectively, by the CEM filter
using GM, WM, and CSF as desired object signatures. For
comparison, we also applied the CM method to Fig. 4(a)–(e)
to produce Fig. 6(a)–(c) with the number of classes, to
represent four classes, GM, WM, CSF, and image background
where the detection results of GM, WM, and CSF are labeled
by (a), (b), and (c), respectively. As noted, the CM method was
not stable due to its nature in unsupervised learning. When each
time the CM method was implemented, a different classifica-
tion map was generated. The results in Fig. 6 were obtained
by averaging five runs of implementation of the CM method.
Note that the CM method proposed in Section III is slightly dif-
ferent from the commonly used CM method, which does not
designate any object signature as a specific pattern class. In the
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implementation of our proposed CM method, the desired ob-
ject signature was designated as one specific class and this class
was fixed during its unsupervised clustering. This is because the
CEM required the knowledge of the desired object signatures. In
order to make a fair comparison between the CM method and
the CEM, the information of the desired object signatures re-
quired for the CEM was also made available to the CM method.
As a result, three images [Fig. 6(a)–(c)] were 4-class classifica-
tion maps with GM, WM, and CSF designated as desired object
signatures, respectively. For example, in the classification map
of Fig. 6(a) the GM signature in Fig. 2 was used as the desired
signature in the initial step of the CM method with and

GM where the pixels classified into the GM class were
assigned to be highest gray level value 255 and the pixels in the
CSF class, WM class and background class were assigned to
128, 64, and 0, respectively. Similarly, the classification maps
of Fig. 6(b)-(c) were obtained by assigning the gray level value
0 to the background and the gray level value 255 to the pixels
classified in the WM and CSF, respectively, while in Fig. 6(b)
the gray level values 128 and 64 assigned to the pixels falling
in the GM and CSF classes, respectively, and in Fig. 6(c) the
gray level values 128 and 64 assigned to the pixels belonging to
the WM and GM classes, respectively. The gray level values as-
signed to these four classes for each case were a purely empirical
choice to maximize the contrast of the desired object signature.

As for computational complexity, we used Pentium III,
733-Mhz PCs to run all the experiments for the CEM and
our CM method. It was found that the CEM produced one
detection image almost instantly with less than a second (865
ms). Compared with the CEM, the CM method required about
4 min. (248 021 ms) for each run to generate one classification
map. Since the CM method needed 5 runs of the CM method
to obtain the average performance for each case of using GM,
WM, and CSF as the desired object signatures, a total of 15
runs was required to generate the three images in Fig. 6(a)–(c)
with computing time of about one hour.

In MR phantom image experiments, Gaussian noise was sim-
ulated to achieve various SNR for quantitative analysis. Unfor-
tunately, a quantitative study will be difficult for the above real
MR image experiments for the following two reasons. One is
that it requires reliable techniques to estimate noise in the MR
images. This has been a challenging issue in signal and image
processing [35], [36] and beyond the scope of this paper. The
CEM filter generates gray scale abundance fractional images for
MR image classification which provide radiologists with gray
level information for their visual interpretation. Such qualita-
tive information is useful for medical diagnosis, but will be lost
if gray scale images are converted to binary images by thresh-
olding. In addition, it is nearly impossible for radiologists to
identify all the pixels in real MR images for quantitative study
as the way we did for phantom images where we knew exactly
what class to which each pixel belonged. As a consequence,
no quantitative analysis was conducted for the real MR image
experiments.

C. Discussion and Conclusion

The CEM is a new technique, which recently showed great
success in remote sensing image classification [37]. It considers

Fig. 7. An R–G–B color image fused by the three images in Fig. 5(a)–(c).

a pixel as a mixture of object signatures present in the image data
and unmixes the object signature by estimating their abundance
fractions resident in the pixel. As a result, it produces a gray
scale abundance fractional image for each object signature with
gray level values proportional to the abundance fractions of the
object signature contained in the pixel. Its detection and classi-
fication is then performed by these generated abundance frac-
tional images. Such analysis is referred to as subpixel detection
and mixed pixel classification in remote sensing literature. Com-
pared with traditional spatial-based image classification tech-
niques that are basically class-label assignment processes on the
basis of pure pixels, the CEM is actually an estimation technique
operating on mixed pixels. Consequently, the performance of
the CEM is determined by three parameters: detection rate,;
false alarm rate, ; and abundance fraction,%. In order to
evaluate the inter-relationship among these parameters, a new
3-D ROC analysis was proposed in Section IV-A and used for
performance evaluation for phantom image experiments. The
concept of such a 3-D ROC analysis was recently developed for
hyperspectral image analysis [38], [39]. The 2-D ROC analysis
is well established for signal detection theory, which is based on
testing two hypotheses. However, the proposed 3-D ROC anal-
ysis is developed for signal estimation theory which is based
on signal abundance fractions estimated from the data with the
third dimension specified by abundance fraction,%. When a
particular value of % is used to threshold a gray scale abun-
dance fractional image into a binary image, it results in a pair of
( ) that corresponds to a point in a 2-D ROC curve. So,
the 3-D ROC curve is still a one-dimensional curve, not a 3-D
surface. It can only be described in a 3-D space formed by three
parameters ( %) where each point on the 3-D curve
is a result of a pair of ( ) with a specific % used as a
cutoff threshold value. As noted, when the threshold value of%
is set too low, a mixed pixel may contain more than one object
signature whose abundance fraction exceeds the threshold value
%. Consequently, the pixel may be classified to more than one

class. If the % is set too high, a pixel must have a sufficiently
enough abundance fraction to be declared as a target. Otherwise,
the pixel will be assigned to a background pixel. Such scenarios
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Fig. 8. Three R–G–B color images produced for each of Fig. 6(a)–(c); (a) GM, (b) WM, (c) CSF.

will occur in mixed pixel classification, but not in pure pixel
classification.

Since the CEM designates a particular object signature as a
desired target signature for detection, it must perform for each
object signature to achieve classification as demonstrated in
Fig. 5. However, its classification can be also performed by
fusing all separate detected objects into one image by assigning
different colors to distinct detected objects. Fig. 8 shows a
color image that used red, green and blue to represent GM,
WM, and CSF, respectively, for visualization. As shown in
[38]–[40], this image fusion can be done by extending the
CEM to a linearly constrained minimum variance approach
that can simultaneously classify multiple object signatures
using different colors to highlight detected objects. The color
of a mixed pixel is mixed by colors assigned to the object
signatures that are present in the pixel. So, the mixture of
colors in a mixed pixel indicates how various object signa-
tures are mixed with different abundance fractions. For an

extreme case, an equal R–G–B mixed color will be white. The
advantage of using color visualization cannot be gained by
traditional spatial-based classification methods such as the CM
method. As a comparative example, we also produced three
R–G–B color images in Fig. 8(a)–(c) for the three images in
Fig. 6(a)–(c) which adopted the same color assignment used
for the CEM-generated image (i.e., red for GM, green for WM,
and blue for CSF). As we can see from Fig. 8, there is no
visible difference among the three-color images produced by
the three detection images in Fig. 6(a)–(c). More importantly,
the three color were distinct and no mixed colors were found in
the images. This is not true for Fig. 7. As we compare Fig. 8
with Fig. 7, the CEM-generated color image provides mixture
information of the three tissue signatures via their mixing
colors, whereas the colors of the three images in Fig. 8(a)–(c)
are simply pure not mixed.

Another advantage of the CEM is computational efficient. As
noted in our experiments, it took less than one second to gen-
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erate one image result. Compared with the CM method that re-
quired about 3 min, it was a tremendous saving. Most of all,
the significant strength resulting from the CEM is that it does
not require background knowledge. In particular, the CEM sup-
presses the image background while it extracting the desired
object signature. There is no need for the CEM to classify the
image background into different pattern classes. This advantage
is particularly useful when the image background is complicated
and difficult to characterize.

As a concluding remark, the CM method proposed in
Section III takes advantage of the knowledge of desired object
signatures in its clustering process. Should this knowledge not
be used, our proposed CM method would have become the
commonly used unsupervised CM method. In this case, all the
cluster centers must be reshuffled each time when the clustering
is performed because the desired object signatures might not
be cluster centers as we wish. The resulting performance may
not be as good as our proposed CM method. Besides, it may
also require extra computing time to cluster an additional class
due to the fact that there is no fixed cluster center designated
for a desired object signature.

V. CONCLUSION

This paper presents a new spectral-based technique to MR
image classification, CEM. Three major results are contributed
to this paper. In classical pattern classification, the data are re-
quired to be classified into a number of pattern classes. How-
ever, when it is applied to real data, there is a major issue gen-
erally involved, which is how to deal with background. In many
practical applications, what we are interested is object classi-
fication rather than background classification. Besides, classi-
fying background could be very challenging since the back-
ground is usually not unknown. By working on real data without
prior knowledge about background, there is no way to know
if background classification will faithfully reflect the real data.
On the other hand, in many situations, we generally have prior
knowledge about the objects in which we are interested. So, one
contribution of the proposed CEM method is that it remedies
this problem. It can extract the objects of interest while effec-
tively minimizing interfering effects resulting from unknown
signal sources which include background sources. In medical
images, the object to be classified are generally human tissues
which are soft objects. In general, these soft tissues have de-
formable shapes and cannot be effectively analyzed by classical
spatial-based techniques that primarily designed for rigid object
recognition such as vehicles, industrial tools, etc. Therefore, a
second contribution of this paper is that the CEM views an MR
image sequence as a multispectral image cube with each pixel
represented by a spectral pixel vector. By considering the image
cube as a whole, the CEM takes advantage of spectral properties
present in each pixel vector as well as spectral correlation among
sample pixel vectors. This benefit certainly cannot be gained by
any spatial-based image analysis techniques. A third contribu-
tion made in this paper is a new approach to 3-D ROC anal-
ysis, which is based on three parameters, detection probability,
false alarm probability, and abundance percentage. As we know,

the classification results produced by classical spatial-based pat-
tern classification techniques are basically classification maps,
which show labels of each pixel. By contrast, the image pro-
duced by the CEM filter is essentially a gray scale image. In
order to evaluate its performance, the classical 2-D ROC anal-
ysis is extended to a 3-D ROC analysis which is based on three
parameters, detection rate, false alarm rate, and abundance frac-
tion percentage. Including object abundance fractions as a third
dimension in ROC curves is particularly useful for spectral im-
agery where spectral information can be characterized separated
from spatial information.
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